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Statistical Procedures for Counter-current Distribution and Differential Spectroscopy 

BY JAMES E. BACHER 

A formula is presented for the distribution coefficient of a single solute, as a function of counter-current distribution data. 
The formula is a maximum likelihood estimator. Equations are presented for the quantitative analysis of mixtures, as de
rived from the data of counter-current distribution by the theory of least squares. The effect of operation at slight dis
equilibrium on a counter-current distribution is discussed. 

The technique of counter-current distribution, 
which has been developed by Craig,1 is well estab
lished as a method for the fractionation of mixtures 
and for the detection of heterogeneity. The mathe
matical procedures which have been developed for 
the interpretation of counter-current distribution 
data have been adequate for the needs, in that such 
procedures are rapidly executed and of sufficient 
accuracy for the above applications.2,3 A pure 
solute should be distributed according to the 
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concentrations of solute in successive tubes are 
proportional to the successive terms of the expan
sion. K is the distribution coefficient and n is 
the number of transfers, or plates. 

The development of analytical methods based 
on counter-current distribution requires certain 
restrictions. Sufficiently sensitive methods of de
tection of solute must be available so that the solutes 
of a group may be distributed in low enough con
centrations to behave in a nearly ideal manner. 
This requirement is directly opposite to that of 
fractionation, for which high concentrations are 
desired. 

A general equation is derived, valid for all values 
of K and n, which gives a formula, or estimator, 
for K as a function of all the data. In addition, 
the properties of the binomial distribution are used 
to define a range of possible values of the K of a 
given solute as a function of » and of the number 
of the tube which contains the maximum concen
tration of that solute in a given distribution. 
The mathematical procedure is extended to mix
tures of known constituents present in unknown 
amounts, so that the unknown concentrations 
can be calculated from the counter-current dis
tribution, as determined by measurements of 
optical densities at several wave lengths. The 
calculated values of the concentrations are best 
values by the criterion of least squares. 

Equations for a Single Component.—A counter-
current distribution has the properties of a dis
crete frequency distribution. Such distributions 
may be characterized by their moments.4 For a 
counter-current distribution the first moment, or 
mean position, is given by the expression ~^jiD\/ 

i 

X)A- The quantity A is any measure of the 
i 

amount of solute in the ith tube. The first tube, 
(1) L. C. Craig, J. Biol. Chem., IBS, 519 (1944). 
(2) A. Weissberger, "Technique of Organic Chemistry," Vol. I l l , 

Chap. 4 by L. C. Craig and D. Craig, Interscience Publishers, Inc., 
New York, N. Y., 1950. 

(3) S. V. Lieberman, J. Biol. Chem., 173, 63 (1948). 
(4) P. G. Hoel, "Introduction to Mathematical Statistics," John 

Wiley and Sons, Inc., New York, N. Y., 1947, Chap. III . 

into which the solute is introduced, should be 
given the number zero. The first moment of the 
binomial distribution is equal to nK/(l + K). 
Since observed distributions generally fit the ex
pected binomial distributions quite well, the ex
pressions for the observed and theoretical first 
moments may be equated 

« = X > A / Z A = nK/{l + K) (1) 
i i 

The two sums can be calculated simultaneously in 
two or three minutes with any computing machine 
which has provision for cumulative multiplication. 
The method applies for any value of n, Just as 
long as the advancing limb of the distribution 
does not overtake the trailing limb during a multiple 
cycling of the machine. Equation (1) gives a 
maximum likelihood estimate of K. The binomial 
expansion in K can be computed for comparison 
with the observed values. If T1 is the ith term of 
the binomial expansion, with the first term given 
the number zero, then the expected value of A 
is T i ^ A . 

As a check on the value of K, an equation similar 
to (1) can be written for the second moment, other
wise known as the variance, or mean square devia
tion 

ff2 = 1 > " m*= UTW« (2) 

i 

The solution of K can be obtained in less than five 
minutes. The right-hand side is the variance of the 
binomial distribution. 

The higher the order of a moment, the greater 
is the inaccuracy of its measurement. Con
sequently it is not expected that the values of K 
computed from a distribution by equations (1) 
and (2) will agree exactly. Nonetheless, for a pure 
substance, distributed in an accurately made 
machine, the two values should be close together, 
the value from equation (1) being the better. 
Any experimental factor which causes deviations 
from ideal behavior during a countercurrent dis
tribution will generally cause greater errors in the 
second and higher moments than it will in the first. 
I t should be pointed out that the use of the variance 
alone for the estimation of K is particularly poor 
for the case of K approximately equal to one, 
because the derivative of nK/(l + K)2 with respect 
to K is zero for K equal to one. 

Another property of the binomial distribution 
has value. Given that the maximum concentra
tion of a substance occurs in tube p, with the first 
tube numbered zero, then the value of K is limited 
by the inequality 
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t+J. 
n — p 

> K g P 
n + 1 - p 

(3) 

If two adjacent tubes have equal concentrations, 
p applies to the higher numbered tube, and K 
equals the expression on the right. 

If an observed distribution appears to be that 
of a single component, K should be computed by 
equation (1) and checked either by equation (2) 
or by the calculation of the appropriate binomial 
expansion and comparison with the observed points. 
If there are appreciable discrepancies, a single 
adjustment of K will usually suffice to account for 
the impurity. The comparison of observed points 
with a normal distribution as a substitute for the 
binomial distribution is not recommended unless 
the observed distribution is highly symmetric, 
in which case the normal distribution should be 
assigned the mean and variance which are defined 
by equations (1) and (2), respectively. The pre
ceding statement is based on a theorem of Laplace, 
which asserts that the distribution of a normalized 
binomial variable approaches the normal dis
tribution as n increases without limit. 

The equations are illustrated with data from the 
counter-current distributions of cytidine (Fig. 1) 
and uridine (Fig. 2). The Di were obtained by 
measurements of optical density with a Beckman 
model DU spectrophotometer. The densities can 
be measured at several wave lengths. Such 
measurements at different wave lengths are de
pendent with respect to the operation of the 
machine, but are independent with respect to 
measurements of absorption. Consequently, the 
distributions at different wave lengths afford par
tially independent measures of K. The values of 
K for cytidine, from measurements at 260, 270 
and 280 imt, are 0.106, 0.107, and 0.108, respec
tively, as calculated from equation (1). By in-

Observed 

Theoretical For 

K=0.I07 

IO Il 

t. 
Fig. 1.—48-plate distribution of cytidine: hi the figure / 

equals » -f- 1 of the text, i.e., the solute was introduced into 
the tube / •» 1. 

spection, the comparison with the theoretical 
pattern is good; the value of K obtained from 
equation (2) for measurements at 270 m^ is 0.115. 
The values of K for uridine, from measurements at 
250, 260 and 270 my, are 0.153, 0.154 and 0.154, as 
calculated from equation (1). By application 
of equation (2) to data obtained at 260 my, K 
is 0.175. The fit is not quite so good as it was for 
cytidine. The distribution for K equal to 0.157 
fits the points a little better, except for the first 
three points. It is assumed that 1 or 2% of the 
material is uridylic acid. 

!Oh Observed 
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For K =0.157 
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t. 
Fig. 2.—40-plate distribution of uridine; see explanation 

of Fig. 1. 

The inequalities (3) yield a rough estimate of 
A" very quickly. For cytidine the limits for K 
are 5/44 = 0.114 and 4/45 = 0.089. Since the 
concentration in the (p + 1) tube is greater than 
that in the (p — 1) tube, it is expected that K 
should be in the upper part of the range, in agree
ment with the value 0.107. For uridine the limits 
are 6/35 = 0.171 and 5/36 = 0.139. The (p + 1) 
tube and the (p — 1) tube have almost equal con
centrations, so the value of K is almost in the 
center of the range. 

It may be noted that in both figures the nature 
of the deviations is the same. The observed 
points are low in the region of the peak and high 
in the tail areas, relative to the calculated points. 
It is believed that there are two principal sources 
of error in the operation of the machine. The 
shearing plane of the machine may not exactly 
separate the pairs of phases. This case would be 
particularly true for a long run with the corre
sponding increased opportunity for leakage. The 
second source of error is operation at disequilib
rium, to use the expression of Barry, Sato and 
Craig.5 The essential feature of disequilibrium 
is that a migrating tube moving toward a peak 
carries less solute, forward than is expected, and 

(5) G. T. Barry , Y. SaIo 
(1948) 

and L. C. Craig, J. BiJ. Chcm.. 174, 20» 
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a migrating tube moving away from a peak carries 
more solute forward than is expected. Conse
quently a curve spreads faster, and the maximum 
decreases faster, than would be the case if equilib
rium were established between each transfer. 
The symmetrical nature of operation at slight 
disequilibrium should permit the first moment to 
move forward with the theoretical rate, dm/dn, 
which equals K/(I + K). These conditions are 
precisely the ones obtained in the distributions of 
Figs. 1 and 2. Although the machine was rotated 
50 times between each transfer,6 perhaps only 99 
per cent, of the theoretical exchange of solute was 
achieved in each case. Such a situation would 
explain the observed discrepancies. On the other 
hand, if K varies with concentration, the peak 
of a distribution will move either more rapidly 
or more slowly relative to the tail areas than 
would be expected for K independent of con
centration. 

The nature of disequilibrium may be considered 
in greater detail. The general practice is to rotate 
the machine a fixed number of times between plates. 
However, the approach to equilibrium in the mixing 
of two solutions is asymptotic5; consequently 
when the required exchange of solute to achieve 
equilibrium is relatively small, a fixed number of 
rotations of the machine will come closer to achiev
ing equilibrium than if a relatively large exchange 
of solute is required. This point has an immediate 
application. At the beginning of a run, the migrat
ing phase picks up a relatively large amount of 
solute from the bottom phase in the first tube of 
the machine, into which the solute was originally 
introduced. Toward the end of the run, adjacent 
tubes have nearly equal concentrations of solute, 
and relatively small amounts of solute must be 
exchanged at each plate to achieve equilibrium. 
Consequently, fewer rotations of the machine 
should be necessary at the end of a run than at the 
beginning of a run in order to achieve the same 
degree of approach to equilibrium at all plates. 

Naturally, the concern is in regard to the last 
few tenths of one per cent, of the expected exchange 
of solute. Even though the error is too small for 
direct measurement, it may measurably affect the 
dispersion of a counter-current distribution. This 
possibility has been investigated with the following 
model. Let K* be the partition of solute actually 
achieved between the two phases in a tube after a 
certain number of rotations of the machine. From 
the discussion above, the average value of K* 
achieved by the trailing half of the solute in a dis
tribution is K(I — x), and the average K* for the 
advancing half is K(I + x), where x is some small 
fraction, e.g., 0.01. Then K* averaged over the 
whole distribution is just K. However the variance 
of the distribution is increased over the theoreti
cally expected value nK/(\ + K)2. An approxi
mate analysis indicates that the relative increase 
in the dispersion of a distribution, as measured by 
the square root of the variance, is indeed con
siderably larger than x under most circumstances. 
It is inferred that the dispersion of a counter-
current distribution is very sensitive to operation 
at disequilibrium. 

Equations for Mixtures.—The previous dis
cussion concerned the behavior of a single solute 
during counter-current distribution. It is desir
able to obtain equations for use in the quantitative 
analysis of mixtures. It will be assumed that the 
components in the mixture are known, but that 
their concentrations are unknown. It has been 
shown, primarily by the splendid work of Craig 
and his co-workers, that observed distributions 
are generally in good agreement with the expected 
binomial distributions. Estimators for the un
known concentrations can be obtained, based upon 
the supposition that the solutes behave ideally 
and are distributed exactly according to the 
binomial distribution. However, such estimators 
have disadvantages. The formulas are com
plicated and computations based on them would 
be long and tedious in application. Furthermore, 
it was shown that operation at slight disequilibrium 
produces appreciable and systematic deviations 
from ideal behavior. Simpler estimators can be 
obtained which are independent of small deviations 
from ideal behavior. Instead of the assumption 
that the exact distribution of each solute is known, 
it is assumed only that the first moment of the 
distribution for each solute is known and is re
producible with accuracy. Measurements must 
be made, under standardized conditions, of the 
first moment of pure samples of each solute and of 
the molar extinction coefficients at several wave 
lengths. 

A consideration of the equations for mixtures 
may start with the general equation of differential 
spectroscopy, as given by the theory of least 
squares. Let 
Fj = optical density at the j th wave length, as measured 

on the unknown solution, 
tilt = extinction coefficient of the kth substance at the 

jth wave length; all «jk are assumed to be 
known. 

Ck = concentration of the Hh substance in the unknown 
solution. 

E(Fj) = expected value of F±. 

Then 
E(Fi) = 2> ikC\ (4) 

k 

If there are u different solutes, i.e., k = 1, 2, . . . , 
u, then, by the principle of least squares, there are 
u equations of the form 

3 k j 

from which the Ct can be solved if at least u dif
ferent wave lengths are used. For two components, 
one has 

(EO^ + S v ^ . = ^ 
J i i 

(Ev.K + (E4K = E<^ 
J j J 

Once the ejk have been determined under stand
ardized conditions, the coefficients of the Ck 
can be calculated. The calculations for any par
ticular experiment are then readily made. 

Next, the equation for the counter-current dis
tribution of a mixture may be presented. If Mj 
is the optical density at the j t h wave length of the 
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solution in the ith tube of the counter-current dis
tribution, then Fj = J ] A j . Let Ck be the concen-

i 
t rat ion of the Mh substance when all of tha t sub
stance is present in the first tube of the machine, 
i.e., before any plates are applied. Let A^ be the 
fraction of the Mh substance which is in the ith 
tube of the machine after the distribution has been 
completed. The Ai* will be closely related to the 
terms of a binomial expansion, bu t this information 
is immaterial for the present purpose. Then 

and 
E(iDn) = ]T)t:jkCk^4ik 

* 
£(]T;Aj) = X / i ^ X ^ (6) 

^,iAjk is equal to ntk, the first moment of the Mh 
i 

substance. The left side of equation (1), which is 
the estimated first moment of a substance when it is 
the only absorbing substance present, may be 
written X / C ^ V X ^ O - In this case the factor, A / 

i i 
X)A, is simply the measured value of A-,. Let 
i 

Gj = 7^iDiJ. Then equation (6) may be written 

k 
(7) 

Equat ion (7) has the same form as equation (4), 
so in correspondence with equations (5) 

2jcjk'«k'2j£J!'"Ik^lt = 2J e ' l ' " I k '^ ' 
j k i 

where the ^ t and the m\ are assumed to be known 
constants. 

Since measurements are made a t several wave 
lengths, equations (4) and (7) may be considered 
together to give two independent relations for 
each wave length at which measurements are made. 
The sum of squares to be minimized with respect 
to Ck is 

(Gi ~ X êjkTOkCk)2] 
k 

W is a statistical weighting factor. If it is assumed 
t ha t the errors in the observed quantities, A j , 
are normally distributed with mean zero and con
s tant variance, and if there are t tubes in the 
machine, with the first tube numbered zero, then 
W is equal to (2t2 - t)/Q. The large value of W 
results from the fact t ha t the Gj are much larger 
numbers than the Fj . Multiplication by W merely 
adjusts the two square terms to a common numeri
cal level. I t may be found experimentally tha t 
some adjustment is necessary in the value of W, 
but the above expression gives the correct order of 
magnitude. 

The resulting equations for two components are 

{X^ 1^ ' + w,0} ^1 + {Zwr* (w + '«1'*) j Ci = z*i 
i J i 

{5>«>i(W + IK1HZ2)) C1 + (XH2(W'' + mi) \ C2 = £ 6 j : 

As with the equations for differential spectroscopy, 
the coefficients of the Ck in equations (8) need only 
be calculated once for a standardized method. 
The quantities on the right sides of equations (8) 

are given by theexpress ionX e ik (^X^ C i ' + m*ZiDii)> 
J i i 

which equals Ze»12D^w + im*)- The quantities 
J i 

(W + M»k) are functions of i and k, and are known 
numbers once the procedure has been standardized. 
Let gik = (W + imjc). Then the right sides of 
equations (8) are Ze'kZDi>^- This form simplifies 

j ' 
the computations. 

There is a possibility tha t there may be inter
actions among the members of a group of solutes, 
so tha t the values of the m^ may vary, depending 
on the composition of a mixture. Of course, 
before any procedure is applied to unknown mix
tures, it should be tested on mixtures of known 
composition. Da ta obtained from the counter-
current distributions of known mixtures would 
permit a critical test for interactions. Equat ion 
(7) is symmetrical with respect to «k and Ck. 
I t is only necessary to apply the method of least 
squares to equation (7), treating the m^ as unknown 
parameters and the Ck as known numbers. The 
sum of squares Z (G> ~ X€'km><Ck)

2 *s minimized with 
j k 

respect to j«k. For two components the equations 
are 

{X^1^)2}m» + \Z^'iCl^c^}mi ~ Ze'l(^lG> 
j j i 

{X(6iiCiej2C2)]"Zi + [Z^Ci)2J »h = X e ' 2 ^ ' 
j 3 3 

Analyses of a graded series of known mixtures by 
the standardized procedure would permit a char
acterization of the behavior of each solute for all 
conditions which are expected during the analysis 
of unknown mixtures of the given group of sub
stances. To be rigorous, the effect of interactions 
on the values of the extinction coefficients should 
also be examined. 

The application of equations (8) requires a pro
cedure which is considerably more complicated 
than the procedure of differential spectroscopy 
alone. However, the application of countercurrent 
distribution combined with differential spectros
copy has two advantages over the use of the lat ter 
procedure alone. The number of independent 
relations is doubled and the precision should be 
increased thereby. More important , traces of 
contaminants are much more likely to be detected 
in the counter-current distribution pat terns than 
in the absorption spectra alone. The presence of 
contaminants which are absorbing in the applied 
spectral range would invalidate equations (4) and 
(7), bu t an analysis could still be obtained from the 
counter-current distribution pat terns. Up to this 
point it has not been necessary to consider the 
shape of a distribution. However, it has been 

shown tha t the distributions 
XF1W + GjOTi) correspond closely to the appro-

(g) priate binomial expansion. Thus, 
(p.\V -j- Gnu) o n c e the concentrations in a mix

ture have been calculated, the ex-
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pected composite distribution can be calculated. If 
the calculated and observed distributions are in es
sential agreement, one has quite convincing evidence 
for accuracy and for the absence of substances other 
than those which were expected. 

Partial consideration of the shapes of the in
dividual distributions can be made by the addition 
of terms based on the second moments into the 
general sum of squares. Thus equation (2) may be 
written 

1 =m, (»K + ^ 

i 

From a development similar to the development of 
equation (6) 

i k \ K / 

Kk is the distribution coefficient of the kih sub
stance. The incorporation of the additional set 
of independent, but less accurate, square terms into 
the general sum of squares should increase the 
precision of the analysis. It may be an improve
ment to use an empirical value for the variance, 
rather than the theoretical value above. 

The cyclic nature of the machine may give rise 
to circumstances which may be misinterpreted. 
Let it be supposed that one has a machine with 
it tubes, numbered from 0 to t — 1. If a substance 
'for which the distribution coefficient is 1.0 is dis
tributed with 3/ plates and if equation (1) is used 
to calculate K, the summation over i must be from 
0 to Zt, and the tubes from t to 21 — 1 must be 
considered to be the tubes which contain the solute, 
with the other tubes empty. This decision could 
be made from the shape and variance of the dis
tribution, if an approximate value of K were not 
known. On the other hand, in the equations for the 
analysis of mixtures, the summation over i is 
always from 0 to t — 1, regardless of the number 
of plates which are applied in the standard pro
cedure. Thus Wk may have no meaning in terms 

of the distribution coefficient of the &th substance. 
For example, let it be supposed that for the &th 
substance the distribution coefficient is equal to 
1.0, and the standard procedure requires 2t plates. 
The distribution of the Jfeth substance will be 
centered in the tube which is numbered zero with 
the advancing limb in the lowest numbered tubes, 
and the trailing limb in the highest numbered tubes. 
The value of OTk is (t — l ) /2 , which is directly 
opposite on the machine from the actual position 
of the substance. Yet (t — l ) /2 is the correct 
value of OTk to use in equations (8). In this con
nection, it is important that the standard conditions 
separate the values of OTk as much as possible. 
As a guide in the selection of the best value for the 
number of plates in the standard procedure, it 
may be pointed out that a plot of OTk, as a variable, 
versus the number of plates is the plot of a damped 
oscillator. 

I t is clear that if a pair of solvents is available 
which is known to separate readily the components 
which occur in a mixture to be analyzed, then there 
is no need to apply equations (8). However, the 
equations were developed for the analysis of mix
tures of the pyrimidine ribosides, which can be 
prepared in a quantitative manner from nucleic 
acid,6'7 and for which a good pair of solvents is yet 
to be found. Small amounts of free purine sub
stances, which may be found in the mixtures of 
pyrimidine ribosides, are readily separated from the 
ribosides by counter-current distribution. 
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